EECS3342 System Specification and Refinement

Lecture Notes

Fall 2024

Jackie Wang

Lecture 1 - Sep. 5

Syllabus & Introduction

Formal Methods: Theorem Proving vs. Model Checking

Course Learning Outcomes (CLOs) $\Rightarrow \rightarrow \rightarrow \rightarrow$ **CLO1** Document requirements organizing them into appropriate categories such as environmental constraints versus functional properties (safety and progress). CLO2 Construct high level, abstract mathematical models of a system (consisting of both the system and its environment) amenable to formal reasoning. CLO3 Apply set theory and predicate logic to express functional and safety properties from the requirements as events, guards, system variants and invariants of a state-event model. CLO4 Use models to reason about and predict their safety and progress properties. CLO5 Plan and construct a sequence of refinements from abstract high-level specifications to A returner B A improves up implemented code. CLO6 Prove that a concrete system refines an abstract model. **CLO7** Apply the method to a variety of systems such as sequential, concurrent and embedded systems. Kontin. Use practical tools for constructing and reasoning about the models. CLO8

CLO9 Use Hoare Logic and Dijkstra weakest precondition calculus to derive correct designs.

Lecture 2 - Sep. 10

Introduction

Safety-Critical vs. Missional-Critical Professional Engineers: Code of Ethics Safety Property/Invariant Verification vs. Validation

Announcements/Reminders

-> Summary of Event-B Syntax

- Priority: Lab1 <
- Wednesday's lab

Safety-Critical System NPP emonitors 1. nuclear power plant SS + nuclear shutdown system 2. valiation 6. bridge contoller 3. "glove" Island Island 4. paremaker (paremaker challenge) Product FM and the use 5. auto-pilot & auto-driving.

Acceptance Criteria

Req. precise L, no ambignitites, no contradiction El P - fall (Î.) => false Ez Ly complete Ly no massing scenarios Labs

Mission-Critical vs. Safety-Critical

Safety critical

When defining safety critical it is beneficial to look at the definition of each word independently. Safety typically refers to being free from danger, injury, or loss. In the commercial and military industries this applies most directly to human life. Critical refers to a task that must be successfully completed to ensure that a larger, more complex operation succeeds. Failure to complete this task compromises the integrity of the entire operation. Therefore a safety-critical application for an **RTOS** implies that execution failure or faulty execution by the operating system could result in injury or loss of human life.

Safety-critical systems demand software that has been developed using a well-defined, mature software development process focused on producing quality software. For this very reason

the **DO-178B** specification was created. DO-178B defines the guidelines for development of aviation software in the USA. Developed by the Radio **Technical Commission for Aeronautics** (RTCA), the DO-178B standard is a set of guidelines for the production of software for airborne systems. There are multiple criticality levels for this software (A, B, C, D, and E).

These levels correspond to the consequences of a software failure: SCS **Level** A is catastrophic

MCS

- Level B is hazardous/severe
- Level C is major
- Level D is minor
- Level E is no effect

Safety-critical software is typically **DO-178B level A or B.** At these higher levels of software criticality the software objectives defined by DO-178B must be reviewed by an independent party and undergo more rigorous testing. Typical safety-critical applications include both military and commercial flight, and engine controls.

Mission critical

A mission refers to an operation or task that is assigned by a higher authority. Therefore a mission-critical application for an RTOS implies that a failure by the operating system will prevent a task or operation from being performed, possibly preventing successful completion of the operation as a whole.

Mission-critical systems must also be developed using well-defined, mature

software development processes. Therefore they also are subjected to the rigors of DO-178B. However, unlike safety-critical applications, missioncritical software is typically DO-178B level C or D. Mission-critical systems only need to meet the lower criticality levels set forth by the DO-178B specification.

Generally mission-critical applications include navigation systems, avionics display systems, and mission command and control.

Source: http://pdf.cloud.opensystemsmedia.com/advancedtca-systems.com/SBS.JanO4.pdf

Safety Roperty / Invariant Ly Event possible state of the system should satisfy it. Ly If there's at least one state where the TIN. does not hold, it is not satisfied. . 65 Sz assume F states. prove that holds here es, ins. halds.

Verification: Are we building the product vight? Process of bustuation Nalidation: Are we building the right product? ave the reg. ave the reg. ave the why grien thinks by mended by mended by 2000 mers 7. aveto ners 7.

Building the product right?

Building the right product?

Certifying Systems: Assurance Cases

Lecture 3 - Sep. 12

Introduction, Math Review

Model-Based Development Propositional Logic ⇒ : Analogy, Truth Table, Alternative Terms Universal vs. Existential Quantification

Announcements/Reminders

- Priority: Lab1
- Study along with the Math Review lecture notes.

Correct by Construction: Bridge Controller System

Correct by Construction: File Transfer Protocol

Implication ≈ Whether a Contract is Honoured

(1) Inverse: ¬p ⇒ ¬q

Z) Converse Q => P

Lecture 4 - Sep. 17

Math Review

Logical (A) vs. Programming (&&) False Range ¬ R(x) vs. Empty Array Proof Strategies of Quantifiers

Announcements/Reminders

- Lab1 due this Friday at noon.
- Scheduled lab sessions tomorrow.
- Study along with the Math Review lecture notes.

 $\forall \overline{\iota} \cdot Q(\overline{\iota}) = syntax$ $\exists \overline{\iota} \cdot Q(\overline{\iota}) = base cases in programming$ Predicate Logic: Quantifiers can you find a # in a that shows boolean all Positive (int[] a) > if (a. length == 0) { return time } 3 $\forall i \bullet R(i) \Longrightarrow P(i)$ unat of the the empty range? (zero of RCI) =1) take. Man be fand $\exists i \bullet R(i) \land P(i)$ boolean some Positive (FATEJ a) { Jalse what of === (a. length == 0) { return @ tale } R(T)= false? : no whates ran It fand in ampty arved to

Logical Operator vs. Programming Operator

Φ

 $\forall i, j \cdot i \in \mathcal{N} \land j \in \mathbb{Z} \Rightarrow P(i,j)$ need to consider \underline{A} (\underline{C} combinations of $(\overline{C}, \overline{5})$.

Logical Quantifiers: Examples

 $\forall i \bullet i \in \mathbb{N} \Rightarrow i \ge 0$ $\overline{i \in 0, 0, 2^{2}, \pm \infty}$ $\forall \mathbf{i} \bullet \mathbf{i} \in \mathbb{Z} \Rightarrow \mathbf{i} \ge \mathbf{0} \text{ false witness}$ $\forall i, j \bullet i \in \mathbb{Z} \land j \in \mathbb{Z} \Rightarrow i \bigcirc j \lor i \bigcirc j$ $Fa^{lg} \quad \text{wetarss}$ $\exists i \bullet i \in \mathbb{N} \land i \ge 0$ witness: O (\mathbf{T}) $\exists \mathbf{i} \bullet \mathbf{i} \in \mathbb{Z} \land (\mathbf{i} \ge \mathbf{0})$ (J) witness : 3 → ∃ i, j • i ∈ $\mathbb{Z} \land$ j ∈ $\mathbb{Z} \land$ (i < j ∨ i > j) \bigcirc wreness = $\overline{\iota}$ = 2

Logical Quantifiers: Examples Great: show R(T) = fr(T) = true How to prove \forall i \bullet R(i) \Rightarrow P(i) ? titulation of the show $\neg R(\tau) \land zero \ d \Rightarrow : false \Rightarrow P = true$ $harder (2) show <math>R(\tau), P(\tau)$ (e.g. all elements in a non-empty available How to prove $\exists i \bullet R(i) \land P(i)$? positive) Goal: show $R(\tau) \land P(\tau) = true$. (1) give a witness $\exists st$. Goal: show R(T) = fake not R(T) and R(T) How to disprove \forall i • R(i) \Rightarrow P(i) ? not (1) show $R(\tau)$, $\neg P(\tau)$ $g_{\tau,e} a$ witness $f_{\tau,e}$, $R(\tau)$ but $\neg P(\tau)$ How to disprove $\exists i \bullet R(i) \land P(i)$? $f_{\sigma,a}$ is show $R(\tau) \land R(\tau) \land R(\tau) \land rs fake$. $f_{\sigma,a}$ is the rase rs fake. $f_{\sigma,a}$ is $f_{\sigma,a}$ is rs fake. $f_{\sigma,a}$ is $f_{\sigma,a}$. $f_{\sigma,a}$ is $f_{\sigma,a}$.

R(x): x ∈ 3342_class Logical Quantifications: Conversions P(x): x receives A+ $\forall x \cdot Q(x) \Leftrightarrow \neg \exists x \cdot \neg Q(x)$ $(\forall X \bullet R(X) \Rightarrow P(X)) \Leftrightarrow \neg(\exists X \bullet R \land \neg P)$ $(\Rightarrow \{ P \Rightarrow R = \neg P \lor R \}$ Yx. R(x) ⇒ Pczo $\neg \exists x \cdot \underline{\neg}(\neg R(x) \underline{\vee} R(x))$ $\stackrel{(\rightarrow)}{=} (\neg (p \vee q) = \neg p \wedge \neg q, \neg (\neg p) = p$ ≤ f tx. Q(x) <> ¬Fx. ¬Q(x) § $\neg \exists x \cdot \neg (R\alpha) \Rightarrow R\alpha))$

Lecture 5 - Sep. 19

Math Review

Set Comprehension Relating Sets vs. Postconditions Power Set (Enumeration, Cardinality)

Announcements/Reminders

- Lab1 due tomorrow (Friday) at <u>noon</u>.
- Lab2 to be released soon afterwards.

Sets: Definitions and Membership

Relating Sets: Exercises

Sets: Exercises

<u>Set membership</u>: Rewrite $e \notin S$ in terms of \in and \neg

Find a common pattern for defining: 1. = (numerical equality) via \leq and \geq) $\chi = \chi \iff \chi \leq \chi \land \chi \leq \chi$ 2. = (set equality) via \subseteq and \supseteq) $\zeta_1 = \zeta_2 \iff \zeta_1 \subseteq \zeta_2 \land \zeta_2 \subseteq \zeta_1$ 2.=(set equality) via ⊆ and ⊇ $S = \{1, 2, 3\}, T = \{2, 3, 1\}, U = \{3, 2\}$.<u>S</u> S ⊆ ④ c <mark>€</mark>) ⊆ ④ c **⑥** c **⑥** c **⑥** $S_1 \setminus S_2 = S_2 \setminus S_1$ Is set difference (\) commutative?

 $\neg (e \in S)$

/* Return the set of positive elements from input. */ **HashSet**<Integer> allPositive(**HashSet**<Integer> input)

Formulate the `allPositive` method using a set comprehension.

/* Return the set of positive elements from input. */
HashSet<Integer> allPositive(HashSet<Integer> input)

all Positive (mput) EV. 1 Is postcond. Just ()

(1) {x X ∈ TAPATA X>05 ⊆ altput

(2) artput S [X XE TOPUT A X>0

Ex. Z Is postand appropriate just 37

Say:

mput

50

12,3,4

artar

72,3,4

- S denotes the subset all positive elements from `input`.

Set `output` denotes the return value from `allPositive`.
 <u>Relate</u> the two sets S and output with set operators.

/* Return the set of positive elements from input. */
HashSet<Integer> allPositive(HashSet<Integer> input)

Say:

- S denotes the subset all positive elements from `input`.

- Set `output` denotes the return value from `allPositive`.

<u>Relate</u> the two sets S and output without set operators.

Ex 3. Express postconditions using 4, J, =>, ...

$P(S) = \{ x \mid x \subseteq S \} = \{ ch \text{ member in } R(S) \}$ **Power Set** 1. What's the neuber m Calculate the power set of $\{1, 2, 3\}$. TP(S) that has min card? P(1,2,33)2. What's the member th $= \frac{1}{2} \frac{$ IP(S) that have max rands 2 $S \in P(S)$ 11,23, 17,33, 11,33, card. Z 11,2,35 card. 3 # subsets of rand. Z = (3) card.Z

Given a set S, formulate the cardinality of its power set.

Cardinality of Power Set: Interpreting Formula

- Calculate by considering subsets of various cardinalities.
- Calculate by considering whether a member should be included.
- Want to know: [PCS]

Lecture 6 - Sep. 24

Math Review

Incompleteness of Postcondition Interpreting the choose operator Cross Product Relation

Announcements/Reminders

- Lab1 solution released
- Lab2 released

/* Return the set of positive elements from input. */ HashSet<Integer> allPositive(HashSet<Integer> input)

SETATES

Say:

- S denotes the subset all positive elements from `input`.
- Set `output` denotes the return value from `allPositive`.
 Relate the two sets S and output with set operators.

$(R1) {x | x \in input \land x > 0} \subseteq output$ $(R2) output \subseteq {x | x \in input \land x > 0}$

/* Return the set of positive elements from input. */
HashSet<Integer> allPositive(HashSet<Integer> input)

Say:

- S denotes the subset all positive elements from `input`.
- Set `output` denotes the return value from `allPositive`.

Relate the two sets S and output with set operators.

Set of Tuples

Relation: set of ordered pairs. T... e.g. a relation on {1,2,33 and {a,b3} · Is (1, a) a relation on S and T? No! ~ (1,a) is not a set. · Is { (H, E) } a relation on S and T? No! the order is wrong. · Is $\{(1, \Delta), (3, b)\}$ a relation on S and T? $R_{1} = \{(1, \alpha), (3, b)\} \quad \text{YES!} \quad \text{What's the min relation on S and T ? } \\ R_{2} = \{(3, b), (1, \alpha)\} \quad \text{What's the max relation on S and T ? } \\ R_{1} = R_{2} \quad \text{What's the max relation on S and T ? } \\ \text{ST}$

Lecture 7 - Sep. 26

Math Review

Constructing All Possible Relations Domain, Range, Inverse Domain/Range Restriction/Subtraction Relational Image

Announcements/Reminders

- •
- Lab2 released Regionize Guide for Written Test 1 to be released next Tue •
- <u>Remote</u> TA Support

ØESENT {ØJESENT Set of Possible Relations meaning that each member is a set of pairs. Set of Possible Relations meaning that each member is a set of pairs. Set of Possible Relations

- Set of possible <u>relations</u> on S and T: $\phi \in S \leftrightarrow T$, $S \times T \in S \leftrightarrow T$
- Dedicated symbol for set of possible <u>relations</u> on S and T: S ← T
- Declare that set r is <u>a relation</u> on S and T:

Veparture = É toronto, montreal, vancanter3 Vestination = [beijing, searly pencing] airline E Departure (> Vestimation $15 \times 11 \leftarrow 11 \quad Covd? \quad P(Percuture \times Pestimation) \\ 2 = 2 \quad 2 \quad 2 \quad 1 = 7$

Relational Operations: Domain, Range, Inverse

Relational Operations: Image

Relational Operations: **Restrictions** vs. Subtractions

Relational Operations: **Overriding**

$$r = \{(a, 1), (b, 2), (c, 3), (a, 4), (b, 5), (c, 6), (d, 1), (e, 2), (f, 3)\}$$

Example: Calculate r overridden with {(a, 3), (c, 4)}

Hint: Decompose results to those in t's domain and those not in t's domain.

Lecture 8 - Oct. 1

Math Review, Lab1 Solution, Lab2

Algebraic Properties of Relational Ops Lab2: Celebrity_0 Functional Properties

Announcements/Reminders

- Lab2 due this Friday
- Guide for **Programming Test 1** released

THINK: transfer event from Lab

Exercises: Algebraic Properties of Relational Operations

r[s] = ran(s < r) Groves a relationGroves a relation

Define the image of set s on r in terms of other relational operations.

<u>v[S]</u> S= {a,b}

Hint: What range of value should be included?

Define r overridden with set t in terms of other relational operations.

Hint: To be in t's domain or not to be in t's domain?

 $r \triangleleft t = t \cup (dan(t) \triangleleft v)$

Lab2: Relational Operators

K= { (Mark, Alan),

(Tom, Akr)

tom aximul: <u>(F)[[[[]]]]</u> = P\[[[]]] celebrited is known by except except every person except the themselves celebrety K = { (Mark, Alan); (Tom, Alan); (Tom, Mark; 3 [KO[[Ton]]= [Akn, Klark] celebitta Tom TS known by erezione (Except En

 $r = \{(a, 1), (b, 2), (c, 1)\}$

1. É-cercise : check this against the func. property -> satisfied 2. Injective function

<u>Lecture 9 - Oct. 3</u>

Math Review

Partial Function vs. Total Function Relational Img vs. Function App Modelling Decision: Rel, Pfun, Tfun

Announcements/Reminders

- Lab2 due tomorrow at noon
- Guide for **Programming Test 1** released

* Each domain relie maps to at most one varge value ** Two distance values for the range cannot be Functional Property mapped by the same isFunctional(r) ⇔ ∀ s, †1, †2 • $\{(a, 1), (a, +)\}$ ($s \in S \land \dagger 1 \in T \land \dagger 2 \in T$) $\Rightarrow \quad \text{``ti $=$ t2 $=](($,t_1) \in Y \land ($,t_2) \in Y)}$ $((s, \pm 1) \in \mathbf{r} \land (s, \pm 2) \in \mathbf{r} \Rightarrow \pm 1 = \pm 2)$ -> Q Smallest relation satisfying the functional property. Ø Q How to prove or disprove that a relation r is a function. Q: Rewrite the <u>functional property</u> using <u>contrapositive</u>. Fore $\frac{Drspore}{VI \neq VZ}$ find a writness, which shows that $P \Rightarrow g \equiv 7g \Rightarrow 7p$ $O Trivic(VI \neq VZ (O(3, VI) \in V and (O(3, VZ) \in V) @ Y \neq 0$ Ghav that there's no such (Siti) ~ (Siti) Tr V check to make sine no dom value maps to distint val. values.

Relational Image vs. Functional Application

Modelling Decision: Relations vs. Functions

An organization has a system for keeping <u>track</u> of its employees as to where they are on the premises (e.g., ``Zone A, Floor 23''). To achieve this, each employee is issued with an active badge which, when scanned, synchronizes their current positions to a central database.

Assume the following two sets:

- *Employee* denotes the **set** of all employees working for the organization.
- Location denotes the set of all valid locations in the organization.

Is where_is ∈ Employee <-> Location appropriate?

Is where is \in Employee \rightarrow Location appropriate?

Is where_is ∈ Employee + Location appropriate?

Review Q & A - Oct. 6

Programming Test 1

PracticeTest1 Solution Walkthrough Lab1 Solution Math Review Lecture

Announcements/Reminders

Released:

- Lab2 solutions (PDF & a walkthrough tutorial video)
- PracticeTest1 solution

PracticeTest1 Solution: Context

PracticeTest1 Solution: Events (Init, Admission, Leave)

Lab1 Solution: Machine (Variables & Invariants)

inv6: dom(b) = dom(owner)

Consistent domains of the balance and owner functions (ENV9) - Solution to Exercise 4 of Lab1 (Note. If we declared this invariant as a theorem, then it must be provable/derivable from other invariants that are declared as axioms, which is not the case. Instead, we also declare this invariant as an axiom (i.e., not as a theorem) so that proof obligations (POs) will be generated regarding it being established (by INITIALIZATION) and preserved (by other events).)

Lab1 Solution: Machine (transfer)

$\begin{array}{l} \textbf{MACHINE Bank0} \\ // \text{ Initial model of the bank system} \\ \textbf{SEES C0} \\ \textbf{VARIABLES} \\ \text{b balance (ENV2)} \\ \text{d cash drawer (REQ7)} \\ \text{owner account owner (ENV9) - Solution to Exerce} \\ \textbf{INVARIANTS} \\ \text{inv1: } b \in ACCOUNT \rightarrow \mathbb{Z} \end{array}$

```
inv1: b \in ACCOUNT \Rightarrow \mathbb{Z}

inv2: d \in \mathbb{Z}

inv3: \forall a \cdot a \in dom(b) \Rightarrow b(a) \geq -c

(ENV3)

inv4: \forall a \cdot a \in dom(b) \Rightarrow b(a) \leq L

(ENV3) - Solution to Exercise 3 of Lab1

inv5: owner \in ACCOUNT \Rightarrow PERSON

(ENV9) - Solution to Exercise 4 of Lab1

inv6: dom(b) = dom(owner)
```

```
Event transfer \langle \text{ordinary} \rangle \cong
       (REQ11) - Solution to Exercise 4 of Lab1
                                      pe b={..., <u>al</u> → b(al),

→ transfer az +> b(az) }
       anv
               а1
               а2
               v
             re

grd1: a1 \in dom(b) post b = \frac{1}{2} \cdots = 0

grd2: a2 \in dom(b)

grd3: a1 \neq a2 maple a2
       where
               grd4: b(a1) - v \ge -c
               gr15: b(a2) + v \le L
               grd6: v \in \mathbb{N}_1
                  Necessary to make POs related to inv3/inv4 discharged
                               all.
       then
               act1: b := b \bigoplus \{a1 \mapsto b(a1) - v, a2 \mapsto b(a2) + v\}
                   Note. It's not allowed to have two actions involving the
                   := ...
       end
END
                                              Rata
                    abb
```

<u>Lecture 10 - Oct. 8</u>

2

Math Review, Bridge Controller Intro

Injective vs. Surjective vs. Bijective Modelling an Array as a Function

Announcements/Reminders

- **ProgTest1** tomorrow Wednesday
- Lab3 released

tota	An > partial func. Injective Functions * it cannot be the rase that two distinct domain values map to the same range value.	
trai	$isInjective(f)$ $\forall \overrightarrow{s_1}, t_2 \cdot (S \in S \land t_i \in T \land t_2 \in T) \Rightarrow ((S,t_1) \in f \land (S,t_2) \in f \Rightarrow t_1 = t_2)$ $\forall s_1, s_2, t \cdot (s_1 \in S \land s_2 \in S \land t \in T) \Rightarrow ((s_1, t) \in f \land (s_2, t) \in f \Rightarrow s_1 = s_2)$	
faj. prop.	If <i>f</i> is a partial injection , we write: $f \in S \Rightarrow T$ \circ e.g., $\{\emptyset, \{(1,a)\}, \{(2,a), (3,b)\}\} \subseteq \{1,2,3\} \Rightarrow \{a,b\}$ $\circ \cdot e.g., \{(1,b), (2,a), (3,b)\} \notin \{1,2,3\} \Rightarrow \{a,b\}$ parts for $f \in S \Rightarrow T$ \circ e.g., $\{(1,b), (3,b)\} \notin \{1,2,3\} \Rightarrow \{a,b\}$ parts for $f \in S \Rightarrow T$ \circ e.g., $\{1,2,3\} \Rightarrow \{a,b\} = \emptyset$	>
**	• e.g., {(2, d), (1, a), (3, c)} ∈ {1,2,3} → {a, b, c, d} • e.g., {(2, d), (1, c)} ∉ {1,2,3} → {a, b, c, d} • e.g., {(2, d), (1, c), (3, d)} ∉ {1,2,3} → {a, b, c, d} • e.g., {(2, d), (1, c), (3, d)} ∉ {1,2,3} → {a, b, c, d} • e.g., {(2, d), (1, c), (3, d)} ∉ {1,2,3} → {a, b, c, d}	

Bijective Functions

f is **bijective**/**a bijection**/one-to-one correspondence if f is **total**, **injective**, and **surjective**.

Lecture 11 - Oct. 10

Bridge Controller Intro

Formalizing Arrays as Functions Bridge Controller: Intro Initial Model: Abstract State

I. Math Rossow Cecture 3. No Labl 7. Cabl & Cab Z 3. No Labl WrittenTest1 on Wednesday, October 23

- Squide & proceive Q.s Monday porest. Office Hours during Reading Week TBA:
- Holn on Lah?

Announcements/Reminders

- Help on Lab3
- Questions on, e.g., Lab1, Lab2, Math Review Lecture

Bonus Opportunity: Midterm Course Survey (eClass)

to be to be reversed Curd dessoussed But if no such assumption $\rightarrow \mathbb{Z}$ is infinite $\rightarrow \mathbb{Q} \in \mathbb{Z} + \mathbb{W}\mathbb{Z}$ is not appropriate \mathbb{Z} is infinite.

<u>State Space of a Model</u> does not restrict the variables/constants

Definition: The state space of a model is the set of <u>all</u> possible valuations of its declared constants and variables, subject to declared constraints. $3200 \text{ pre} = \left\{ (C, L, ACConts) \right\}$

Say an initial model of a bank system with two <u>constants</u> and a <u>variable</u>: * $O \in \mathbb{N}1 \land (L \notin \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (L \oplus \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (L \oplus \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (L \oplus \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (L \oplus \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (L \oplus \mathbb{N}1 \land (accounts) \in String \Rightarrow \mathbb{Z}$ * $O \in \mathbb{N}1 \land (accounts) = -c \leq accounts(id) \leq L(M \land (accounts) \land (accounts) \land (accounts) \in String \Rightarrow (accounts) \in String \Rightarrow (accounts) \land (accounts) \in String \Rightarrow (accounts) \in String \Rightarrow (accounts) \land (accounts) \land (accounts) \Rightarrow (accounts) \land (acc$

 $\begin{array}{c} \text{Init:} (0,000, 2000, 0) \\ \text{C1:} (10,000, 20,000, 2 "bill" \mapsto 50003) \\ \text{C2:} (10,000, 20,000, 2 "bill" \mapsto 50003) \\ \text{C2:} (10,000, 20,000, 2 "bill" \mapsto 50003) \\ \text{C2:} (10,000, 20,000, 2 "bill" \mapsto -50,003) \\ \text{C2:} (10,000, 2 "bill" \mapsto -50,003) \\ \text{C2:} (10,$

Luar/Const Est typing Constraints A Invariant

Bridge Controller:

Requirements Document

ENV2 The traffic lights control the entrance to the bridge at both ends of it.	
Cars are not supposed to pass on a red traffic light, only on a green one.	
ENV4 The system is equipped with four sensors with two states: on or off.	
ENV5 The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it.	
REQ1 The system is controlling cars on a bridge connecting the mainland to an island.	
REQ2 The number of cars on bridge and island is limited.	
REQ3 The bridge is one-way or the other, not both at the same time.	xe(

Mainland

Bridge

4

Island

Bridge Controller: Abstraction in the Initial Model

Bridge Controller: State Space of the Initial Model

Bridge Controller: State Transitions of the Initial Model

Review Q & A - Oct. 20

Written Test 1

Practice Test Questions Math Review Lecture

O to pare I, withess 3 $\exists x, y \cdot \chi \in N \land y \in N \land \chi * y > q$ Consider the following predicate:) ② **#**x, y . x : NAT & y: NAT & x * y > 0 to dispove, Consider each of the following statements in isolation, choose all that are correct. need to constation \Box 1. The predicate is not a theorem and can be disproved by an x-y pair (5, 0). \Box 2. The predicate is not a theorem and can be disproved by an x-y pair (12, -2). -ZENA-3EN 3.• None of the listed statements is correct. \Box 4. The predicate is a theorem and can be proved by an x-y pair (-2, -3). 5. The predicate is a theorem and can be proved by an x-y part (5, 4) \rightarrow $5 \in N \land 4 \in N \land F + 4 > 0$ \mathbf{D} 6. The predicate is a theorem and can be proved by an x-y pair (2, 3). \Box 7. The predicate is not a theorem and can be disproved by an x-y pair (12, 13). 5EN A DEN A 5* 0 > 0 this witness evaluates to fall , but not

ja, b, c, d3 1 ja, e3 U ja.f3 Given two sets S and T, say we write: • S V T for their union S ∧ T for their intersection • S \ T for their difference What is the **<u>cardinality</u>** of the power set of $({a, b, c, d}) \setminus {a, e}$ Ther an integer value (with no spaces). Answer: 32 $\mathbb{P}((\underline{i}a,\underline{b},\underline{c},\underline{d}\underline{3},\underline{i}\underline{a},\underline{e}\underline{3})\cup \underline{i}a,\underline{f}\underline{3})$ {b,c,d3u {a,f3 $\mathbb{P}(\{a,b,c\},d,f\})$ [[a,b,c,d,f]] = 7 = 32

Consider the following logical quantification:

!x,y.x:NAT&y:NAT=>x+y>=10&x+y<20

 $P \land Q \lor Y \equiv (P \leq Q) \leq Y$ Convert the above predicate to an equivalent one using the other logical guantifier.

Note the following constraints on your answer:

- Only put pairs of parentheses when necessary.
- Like the above predicate, there should be **no** white spaces.
- Like the above predicate, numerical constants (i.e., 10, 20) must appear as the right operands of the relational expressions (e.g., x + y >= 10).

Prece der Ce

 $\forall \chi \cdot R(\chi) \Rightarrow R(\chi)$

• Relational expressions should be simplified whenever possible, e.g., write $x \ge 20$ rather than not(x < 20).

Be cautious about the spellings: this guestion will be graded **automatically** and no partial marks will be give to spelling mistakes.

Answer:			
	R(x,y)	Y(x,y) * *	
! X .7 .	. X: NAT& y: NAT = X+y>	=10& 7+2 < 20 not ((+2)>=10 & (+1)/>>>
not (# r 1	Y. MATE 7. MATEMY+1	(h, x, y) ~ 2 (h + y 2 /b)	x 1 y - 20)
	· · · · · · · · · · · · · · · · · · ·	CN or KTY >= Agy = Moll	(+y >= (0) (2)
		x+2 >= 20	$\chi_{\epsilon_{\gamma}} < \chi_{\gamma}$

Written Test 1: Practice Question 5 r e S e T the set of all possible relations the set of all possible relations to tween S and T.

Consider two sets: • $S = \{x, y\}$ • $T = \{1, 2, 3\}$ SXT

Write out the **maximum** relation r such that r : S <-> T.

Requirements. In your answer:

- Pairs must be sorted in an ascending order by the first elements, or by the second elements if the first elements are identical. For examples: (x, 2) appears before (y, 1), (x, 1) appears before (x, 2), etc.
 - No white spaces should be included, e.g., write (x,1) rather than (x, 1).

Be cautious about the spellings: this question will be graded **automatically** and so no partial marks will be given due to spelling mistakes.

Consider two sets:

- $S = \{x, y\}$
- T = {1, 2, 3}

Enumerate the following set:

{(a,b) | a : S & b : T & a /= x & b < 3}

Requirements. In your answer:

• Pairs must be sorted in an ascending order by the first elements, or by the second elements if the first elements are identical. For examples: (x, 2) appears before (y, 1), (x, 1) appears before (x, 2), etc.

 $\frac{1}{2}$ $(\frac{1}{2})_{2}$ $(\frac{1}{2})_{3}$

• No white spaces should be included, e.g., write (x,1) rather than (x, 1).

Be cautious about the spellings: this question will be graded **automatically** and so no partial marks will be given due to spelling mistakes.

1 (2,1), (2,2)5 Answer: property: $a \neq X \lor b < 3$ $\exists \neg (a \neq X \lor b < 3)$ (Eventrises) $a \neq X \Rightarrow b < 3$

Griven N elements, how many ways can we make subsets of size m? Written Test 1: Practice Question 7 Consider two sets: • $S = \{x, y\}$ • T = {1, 2, 3} < down. res. << down. sub. Consider r such that r : S <-> T: {(x, 1), (x, 3), (y, 1), (y, 2)} $r = \{(\pi, i), (\pi, 3), (\eta, i), (\eta, i)\}$ What is the result of the following expression: rom. res. $<<|(r|>(T \setminus \{2\}))$ Requirements. In your answer: • Pairs must be sorted in an ascending order by the first elements, or by the second elements if the first elements are identical. For examples: (x, 2) appears before (y, 1), (x, 1) appears before (x, 2), etc. • No white spaces should be included, e.g., write (x,1) rather than (x, 1). Be cautious about the spellings: this question will be graded automatically and so no partial marks will be given due to spelling mistakes. $f\chi$ $d(r \triangleright (T \setminus f_2))$ PY. Answer: 5(7,1)3 @X, (7,1)3 f@X,

Lecture 12 - Oct. 22

Bridge Controller

Event Action vs. Before-After Predicate Before- vs. After-States Sequents: Syntax and Semantics

Announcements/Reminders

- **ProgTest1** results to be released around <u>next Monday</u>.
- WrittenTest1 tomorrow during your <u>enrolled</u> lab session
- Lab4 released (ProgTest2 on November 6)
 - + Try to complete **<u>Part 1</u>** by Friday.
 - + Follow the proof steps in <u>Part 2</u> & collect questions.
 - + Scheduled lab session on October 30.

Before-After Predicates of Event Actions

DE ACOUNT +> N Transition of an Event a: Alcount andre d'ant (mist be anabled U: N 100001 withdraw V: N 1. gypro Pre-State: NET where post-state a ∈ dom (b) 2. I be pre-state Kest-State: begin <u>x effect of event action</u>. Is the post-state, I remains to L be two b f {a lob b(a) - v} after the event's action tokes effect, still safe? L := $\forall \alpha \cdot \alpha \in \mathsf{dom}(\underline{4})$ end $\forall a \cdot a \in dom(b) \Rightarrow b(a) > -c$ Is I Ba) 7/-C

Exercise: Event Actions vs. Before-After Predicates

Q. Are the following event actions suitable for a swap between x and y?

Sequents: Syntax and Semantics

PO/VC Rule of **Invariant** Preservation

EXENTICE ML_TA/INV

Lecture 13 - Oct. 24

Bridge Controller

Proof Obligation of Inv. Preservation Inference Rule: Syntax and Semantics

Announcements/Reminders

- ProgTest1 & WT1 results to be released <u>next Monday</u>.
- Lab4 released (ProgTest2 on November 6)
 - + Try to complete Part 1 ASAP.
 - + Follow the proof steps in <u>Part 2</u> & collect questions.
 - + Scheduled lab session on October 30.

PO/VC Rule of **Invariant** Preservation: Components

PO/VC Rule of **Invariant** Preservation: Sequents

Me_art/INVO_1/IIVVI

P.O. 73 related to whether a not taking a state transition of event M2 att can TARESENSE/MATTATA TANO_1

PO/VC Rule of **Invariant** Preservation: Sequents

Inference Rule: Syntax and Semantics

Lecture 14 - Oct. 29

Bridge Controller

Inference Rules: Proof Steps Interpreting Unprovable Sequents

Announcements/Reminders

- ProgTest1 & WT1 results released
- Lab4 released (ProgTest2 on November 6)
 - + Scheduled lab session on October 30.

Inference Rule: Syntax and Semantics

1- G

= True -

Proof of Sequent: Steps and Structure

Understanding Inference Rule: OR_L

Discharging POs of original mO: Invariant Preservation

Lecture 15 - Oct. 31

Bridge Controller

Revising MO: Adding Event Guards Re-Generating/Re-Proving PO Sequents

Announcements/Reminders

- Lab4 due tomorrow at noon
- ProgTest2 next Wednesday, November 6

Discharging POs of original mO: Invariant Preservation

NEO - N- 1<0

PO/VC Rule of **Invariant** Preservation: **Revised** MO

Discharging POs of revised mO: Invariant Preservation

Lecture 16 - Nov. 5

Bridge Controller

Invariant Establishment Deadlock Freedom

Announcements/Reminders

ProgTest2 tomorrow

Initializing the System

	<i>d</i> ∈ ℕ	<i>d</i> ∈ ℕ	$d \in \mathbb{N}$	$d \in \mathbb{N}$
	$n \in \mathbb{N}$	$n \in \mathbb{N}$	<i>n</i> ∈ ℕ	<i>n</i> ∈ ℕ
	n≤d	n≤d	n≤d	n≤d
	n < d	n < d	<i>n</i> > 0	<i>n</i> > 0
_	⊢	⊢		F
	$n+1 \in \mathbb{N}$	$n+1 \leq d$	<i>n</i> – 1 ∈ ℕ	$n-1 \leq d$

PO of Invariant Establishment

Discharging PO of Invariant Establishment

Bridge Controller : REALTIVE SISTEM Ly there's always at least one event enabled for the sylstem to progress unacceptable: deadlock no event to occur 7 G (ML-out) N7G(ML-in) [deadlock condition] 7 (G(ML_art) V G(ML_TM)) G(MLont) V G(MLAN) [deadlock freedom Gord.]

TN. Pre.

NF

 $d \in \mathcal{N}$ $n \in \mathcal{N} \vdash n < d \lor n > 0$ $n \leq d \quad G(ML - out) \quad G(ML - tn)$

Example Inference Rules

Lecture 17 - Nov. 7

Bridge Controller

Interpreting Unprovable DLF PO First Refinement: Abstraction, State Space

Announcements/Reminders

- ProgTest2 results to be released by Monday, Nov 18
- Lab5 to be released on Friday, Nov 15

Understanding the Failed Proof on DLF

Discharging PO of DLF: Second Attempt

Summary of the Initial Model: Provably Correct

Mo ML-ont 1 ML-M abstract refines abstract m. ML-out Concrete Λ refines Concrete MZ ML-ont

Bridge Controller: State Space of the 1st Refinement

* a=0 V C=0 = 7(a≠0 ~ C≠0)

Bridge Controller: Guards of "old" Events 1st Refinement

Lecture 18 - Nov. 12

Bridge Controller

Abstract vs. Concrete Transitions Predicates: Stronger vs. Weaker Why Guard Strengthening?

Announcements/Reminders

- ProgTest2 results to be released by Monday, Nov 18
- Guide to be released for WrittenTest2 on Wednesday
- No scheduled lab session tomorrow.

Bridge Controller: Guards of "old" Events 1st Refinement

States, Invariants, Events: Abstract vs. Concrete

Consider: < Thit, ML_ant, ML_Th > exercise

Bridge Controller: Abstract vs. Concrete State Transitions

Abstract mO

Before-After Predicates of Event Actions: 1st Refinement

Predicates Weaker US. Stronger

PO/VC Rule of Guard Strengthening: Sequents

Lecture 19 - Nov. 14

Bridge Controller

Discharging Guard Strengthening POs Invariant Preservation: Concrete Events Commuting Diagram: Simulation New Events: IL_in, IL_out

Announcements/Reminders

- Lab5 to be released on by next Tuesday's class (Nov 19) (due on Tuesday, December 3)
- WrittenTest2 next Wednesday, November 20
 - + Guide
 - + Practice Questions
- Bonus Opportunity coming: Formal Course Evaluation

Discharging POs of m1: Guard Strengthening in Refinement

Discharging POs of m1: Guard Strengthening in Refinement

for concrete buts **PO/VC** Rule of **Invariant Preservation**: Sequents Abstract m0 * a' + b' + c' = n' (a+1) + b + c = n+ atoms I(C, V) alst. I ML_out ML_in variables: n J(C, V, W) Cont. I. H(C, W) Con. guard when when n < dn > 0invariants: then then inv0_1 $n \in \mathbb{N}$ *n* := *n* + 1 n := n - 1inv0_2 $n \le d$ end N=N+ end $\mathbf{v}_{i}(\mathbf{c}, \mathbf{E}(\mathbf{c}, \mathbf{v}), \mathbf{F}(\mathbf{c}, \mathbf{w}))$

** a=0 V (-1=0

(A+1) +b+C=n+(1

Discharging POs of m1: Invariant Preservation in Refinement

Discharging POs of m1: Invariant Preservation in Refinement

PO of Invariant Establishment in Refinement

Discharging PO of Invariant Establishment in Refinement

Mo MLant) abst. Events

MI ML out bon. events. ML-En bon. events. New Events = I2-In, I2-out

Bridge Controller: Guarded Actions of "new" Events in 1st Refinement

Before-After Predicates of Event Actions: 1st Refinement

<u>Review Q & A - Nov. 17</u>

Written Test 2

Bridge Controller Lecture Practice Questions

n<d()n=d + n<d v n>0

Each of Labels (1) to (7) denotes the justification for transforming the two neighboring sequents. Drag and drop the appropriate inference rule; otherwise, drag and drop "NONE" to indicate that no rule can be used for the • (1): [MON] **10 • • •** (2): [OR **•**] transformation.

- (3): [OR_R1]
- (4): [HYP]
- (5): [EQ_LR]
- (6): [MON]
- (7): [OR_R2]

 $d \in \mathbb{N}$ $n \in \mathbb{N}$ $n \leq d$ \vdash $n - 1 \in \mathbb{N}$

$$n \in \mathbb{N} \vdash 0 \leq n$$
 P3

You are required to attempt proving the above sequent, using the inference rules as listed here: <u>https://</u>www.eecs.yorku.ca/~jackie/teaching/lectures/2022/W/EECS3342/notes/inference-rule-examples-1.pdf

- 1st inference rule to use (if applicable): [MON]
- 2nd inference rule to use (if applicable): [?]
- 3rd inference rule to use (if applicable): [n.a.]
- 4th inference rule to use (if applicable): [n.a.]

1913. N=10 should not be chosen.

Lecture 20 - Nov. 19

Bridge Controller

Concrete, New Events vs. Abstract skip Livelock, Divergence Invariant vs. Variant Tracing of Abstract/Concrete Transitions

Announcements/Reminders

- Lab5 released (due on Tuesday, December 3)
- WrittenTest2 tomorrow
- Bonus Opportunity coming: Formal Course Evaluation

old events and you events.

PO/VC Rule of **Invariant Preservation**: Sequents

Discharging POs of m1: Invariant Preservation in Refinement

Discharging POs of m1: Invariant Preservation in Refinement

Livelock Caused by New Events Diverging

An alternative m1 (for demonstration)

Invariant us. Variant

Use of a Variant to Measure New Events Converging

Variants for New Events: 2 · a + b

<init, ML_out, ML_out, IL_in, IL_in, IL_out, IL_out, ML_in, ML_in >

concrete events

fixed

Lecture 21 - Nov. 21

Bridge Controller

Proof Obligations of System Variant

Announcements/Reminders

- Lab5 released (due on Tuesday, December 3)
- WrittenTest2 results to be released on Wednesday
- Exam review sessions polling
- Bonus Opportunity coming: Formal Course Evaluation

LiveLock/ Divergence

Lock/ Mutayon -> Carked by an infinite interleaving of <u>New Events</u> bisy boping <u>Dencrete model</u> in the abstact model \rightarrow variant $(\in \lambda)$ is \sim not the range of linelack of a model ~ just a <u>measure</u> on <u>if</u> tre lock is present in your model upwouble means the model trueldeks > 2 PDs & needs to be fried
Use of a Variant to Measure New Events Converging fixed

PO of Convergence/Non-Divergence/Livelock Freedom

Exercise Given variant: a+b

(1) Re-trace the value of v using the same trace (an plot the chagram). Can the same patterns be observed? (2) Formulate the NAR and NAT PDs.
(2 * 2 = 4 sequents
(3) Are they provable?

Example Inference Rules

Lecture 22 - Nov. 26

Bridge Controller

Relative Deadlock Freedom 2nd Refinement: Variables & Invariants Exam Info

Announcements/Reminders

- Lab5 released (due on Tuesday, December 3)
- WrittenTest2 results to be released tomorrow
- Exam review sessions polling

PO of Relative Deadlock Freedom

Discharging POs of m1: Relative Deadlock Freedom

Part 1	$\frac{H1 \vdash G}{H1, H2 \vdash G} MON$	$H(F), E = F \vdash P(F)$ $H(E), E = F \vdash P(E)$	EQ_LR	$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q}$	OR_R
$d \in \mathbb{N} \\ d > 0 \\ n \in \mathbb{N} \\ n \le d \\ a \in \mathbb{N} \\ b \in \mathbb{N} \\ c \in \mathbb{N} \\ a + b + c = n \\ a = 0 \lor c = 0 \\ n < d \lor n > 0 \\ \vdash \\ a + b < d \land c = 0 \\ \lor c > 0 \\ \lor a > 0 \\ \lor b > 0 \land a = 0$					

Discharging POs of m1: Relative Deadlock Freedom

Initial Model and 1st Refinement: Provably Correct MI out when Abstract mO n < dthen constants: d variables: n n := n + 1init end begin invariants: n := 0axioms: axm0 1 : $d \in \mathbb{N}$ **inv0_1** : *n* ∈ ℕ ML in end axm0 2: d > 0inv0 2 : n < d when n > 0then n := n - 1end Concrete m1 IL_in ML_out when variables: a.b.c a > 0when **Correctness** Criteria: a+b < dthen c = 0a := a - 1+ Guard Strengthening b := b + 1invariants: then init constants: d inv1 1: $a \in \mathbb{N}$ a := a + 1end + Invariant Establishment begin **inv1_2** : *b* ∈ ℕ end a := 0inv1 3: $c \in \mathbb{N}$ + Invariant Preservation b := 0axioms: **inv1 4**: a+b+c=nIL₋out axm0 1 : $d \in \mathbb{N}$ *c* := 0 **inv1_5**: $a = 0 \lor c = 0$ ML_in when axm0 2: d > 0end + Convergence when b > 0ariants: 2·a+b 3 2 POs; NAR& NAT c > 0a = 0+ Relative Deadlock Freedom then then b := b - 1c := c - 1end c := c + 1end

Bridge Controller: Abstraction in the 2nd Refinement

Bridge Controller: State Space of the 2nd Refinement

Dynamic Part of Model

Exam Info

- When: 7pm to 10pm, Sunday, December 15
- Where: TC Sobeys
- Coverage: Everything (lecture materials & labs)
 - + slides, iPad notes
- Format: Mostly Written
 - + explanations/justifications
 - + write math expressions -
 - + calculations, proofs
- Restrictions:
 - + One-sided, computer-typed, min 10pt data sheet

= ASCII US. Math.

d enstance some informin. se add some informin.

- + No sketch paper (Exam booklet includes it) Ly - Question booklet ng: - answer booklet
- + No calculator
- What you should bring:
 - + Valid, Physical Photo ID (strict)
 - + Water/Snack

Lecture 23 - Nov. 28

Bridge Controller

2nd Refinement: Splitting Guards Adding Invariant to Prove INV

Announcements/Reminders

- Lab5 released (due on Tuesday, December 3)
- WrittenTest2 results released
- Exam review sessions polling
- Data Sheet:
 - + Hand-Writing & Screenshots allowed
 - + Font size requirement: > 10pt

Bridge Controller: "Old" and "New" Events hey D and

Bridge Controller: Guards of "old" Events 2nd Refinement

Bridge Controller: Guards of "new" Events 2nd Refinement

PO/VC Rule of Invariant Preservation: Sequents

Discharging POs of m2: Invariant Preservation First Attempt

Discharging POs of m2: Invariant Preservation

First Attempt

exercise! Fixed

Understanding the Failed Proof on INV

Fixing m2: Adding an Invariant

Abstract m1 RFQ3 The bridge is one-way or the other, not both at the same time. variables: a, b, c IL out ML out **inv2 5**: ml tl = red \vee il tl = red when when h > 0invariants: a+b < da = 0inv1 1 : $a \in \mathbb{N}$ c = 0then inv1 2 : $b \in \mathbb{N}$ then b := b - 1**inv1_3** : *c* ∈ ℕ a := a + 1c := c + 1 $inv1_4: a+b+c=n$ end end **inv1 5**: $a = 0 \lor c = 0$ ML_out/inv2_4/INV $d \in \mathbb{N}$ ахти т axm0 2 d > 0Concrete m2 COLOUR = { green, red } axm2 1 axm2 2 areen ≠ red inv0 1 $n \in \mathbb{N}$ variables: ML out IL out n < dinv0_2 a.b.c when inv1 1 $a \in \mathbb{N}$ when ml tl inv1_2 b∈ℕ il_tl = areen $ml_t = qreen$ inv1_3 $C \in \mathbb{N}$ il tl then then inv1 4 a+b+c=nb := b - 1inv1_5 $a = 0 \vee c = 0$ invariants: a := a + 1c := c + 1inv2 1 ml tl COLOUR inv2 1 : $ml \ tl \in COLOUR$ end end inv2_2 *il_tl* ∈ COLOUR inv2 2 : if $f \in COLOUR$ inv2_3 $ml_tl = areen \Rightarrow a + b < d \land c = 0$ **inv2_3**: $ml_t = green \Rightarrow a + b < d \land c = 0$ inv2_4 $iI_t = green \Rightarrow b > 0 \land a = 0$ **inv2_4**: $il_t = areen \Rightarrow b > 0 \land a = 0$ inv2 5 $ml_t = red \lor il_t = red$ Concrete guards of ML_OUT ml_tl = green Concrete invariant inv2_4 $iI_{t} = green \Rightarrow b > 0 \land (a+1) = 0$ Exercise: Specify IL_out/inv2_3/INV with ML_out's effect in the post-state

Discharging POs of m2: Invariant Preservation Second Attempt

Lecture 24 - Dec. 3

Bridge Controller

Adding Actions Splitting Events Preventing Livelock/Divergence Proving Livelock/Divergence Freedom

Announcements/Reminders

- Lab5 due today
- Exam review sessions and office hours TBA
- Sample exam questions to come
- Data Sheet:
 - + Hand-Writing & Screenshots allowed
 - + Font size requirement: > 10pt

 $\frac{7}{1} = \frac{1}{1} = \frac{1}$ IL_out/INV2_3/INV/ ml-tl=g=>1C=0 To Viscuss (Today) me-te=g=arbcd M2_out/MNZ_3/INV IL-out/TMZ_4/INV 7l_tl=g=7

Invariant Preservation: ML_out/inv2_3/INV

Discharging POs of m2: Invariant Preservation First Attempt

Understanding the Failed Proof on INV

ML-ont enabled

Current m2 May Livelock

Fixing m2: Regulating Traffic Light Changes

Divergence Trace: <init, ML_tl_green, ML_out_1, IL_in, IL_tl_green, ML_tl_green, IL_tl_green, ...>

Fixing m2: Measuring Traffic Light Changes

PO of Convergence/Non-Divergence/Livelock Freedom

A New Event Occurrence Decreases Variant

PO of Relative Deadlock Freedom

Discharging POs of m2: Relative Deadlock Freedom

1st Refinement and 2nd Refinement: Provably Correct

Review Q & A - Dec. 13

Exam Review Q&A

select (m sketch) the predicated the the related to, 2 Naria NON 3 From there, see how these hypospects are Examine what's to be proved related to the (1) Stulture $(\Rightarrow, >, =)$ (2) naviables insolved 1. data sheet z. mforance nules applicable

• Find <u>a trace to prove some grien variant?</u> EVEN of this workness shows that the NAT and VAR properties are satisfied, offs not sufficient. V trates · NAT ~ VAR To prove a given variant, state NAT and VAR PDs and prove them: x To dispose a variant being vatid/appropriate, <0 find a witness trance which violates either NAT or VAR,

Assume a model consisting of the following components (where A1, I1, G1, and G2 are some valid before the change: DLF condition & GLV GZ After the change: Changes, introduced to the above model, in isolation predicates referring to the declared constants and/or variables):

- An axiom: A1
- An invariant: I1 🗡
- An event e1 with guard: G1
- An event e2 with guard: G2

Consider each of the following 9 possible changes, introduced to the above model, in isolation

 $I(\mathbf{c}, \mathbf{v})$

DLF

- 1. Adding a new axiom A2 (where A2 is a valid predicate)
- 2. Changing event e1's guard to "G1 & P" (where P is some valid predicate)
- 3. Changing event e1's guard to "G1 or P" (where P is some valid predicate)
- 4. Removing axiom A1
- 5. Removing e2's guard G2 (so that it has no guard)
- 6. Adding a new, second guard G2' (where G2' is a valid predicate) to event e2
- 7. Adding a new invariant I2 (where I2 is a valid predicate)
- 8. Adding a new event e3 with guard G3 (where G3 is a valid predicate)
- 9. Removing invariant I1

I hope you enjoyed learning with me A All the best to you ?